

1. Write the correct answer:(1×3)

(i) In the ring $R[x]$, if $f(x), g(x) \in R[x]$ and $\deg(f(x)) = m$, $\deg(g(x)) = n$. Then $\deg(f(x) \cdot g(x))$ is

- (A) less than or equal to $\max(m,n)$
- (B) less than or equal to $m+n$
- (C) less than or equal to $m \cdot n$
- (D) less than or equal to $\max(m+n, m \cdot n)$.

(ii) Let W be a subset of a linear space $V(F)$. Then the annihilator $A(W)$ is

- (A) a subspace of $W(F)$
- (B) a subspace of $V(F)$
- (C) a subspace of $\widehat{V}(F)$, 1st dual
- (D) a subspace of $\widehat{V}(F)$, 2nd dual.

(iii) In an inner product space $V(\mathbb{R})$, if $(x,z) = (y,z) \forall x,y,z \in V(\mathbb{R})$. Then

- (A) $x=y$
- (B) $y=z$
- (C) $z=x$
- (D) $z = x-y$.

2. Answer all the questions:(1×6)

(i) Define a Principal Integral Domain (PID).

(ii) When is a polynomial $f(x) \in R[x]$ said to be irreducible?

(iii) Define an eigen space associated with a linear operator T and with an eigen value C of T .

(iv) What is meant by the statement that a subset W is T - invariant subspace of a vector space $V(F)$.

(v) Define a Unique Factorisation Domain (UFD).

(vi) Write the triangle inequality in an inner product space.

3. Answer any five (5) of the following:(3×5)

(i) Prove that an arbitrary ring R can be imbedded into the ring $R[x]$.

(ii) Let $T: C^2 \rightarrow C^2$ be defined by $T(x,y) = (x,0)$.

If $\alpha = \{\alpha_1 = (1,0), \alpha_2 = (0,1)\}$

$\beta = \{\beta_1 = (1,i), \beta_2 = (-i,2)\}$

Compute $[T]_{\alpha,\beta}$.

(iii) Let T be a linear operator defined on a FDVS $V(F)$. Let C_1, C_2, \dots, C_n and V_1, V_2, \dots, V_n are distinct eigen values of T and the corresponding eigen vectors. Prove that V_1, V_2, \dots, V_n are linearly independent.

(iv) In an inner product space $V(F)$, if for $(x,y) \in F$, $x \perp y$ then show that $\|x+y\|^2 = \|x\|^2 + \|y\|^2$.

(v) $R[x]$ is commutative implies R is commutative and conversely.
 (vi) Using Cauchy Schwarz's inequality, prove that cosine of an angle is of absolute value atmost 1.

4. Answer any five (5) of the following:(4×5)

(i) Prove that an Euclidean Domain is obviously a PID.
 (ii) In a UFD, R an element is prime if and only if it is irreducible.
 (iii) Let $\mathbb{R}^2 = \{(x,y) : x \in \mathbb{R}, y \in \mathbb{R}\}$. Define $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ by $T(x,y) = (x,0)$.
 Show that 1 is an eigen value of T and the eigen space of 1 is the x-axis.
 (iv) Let T be a linear operator on a FDVS $V(F)$. Prove that a scalar $\alpha \in F$ is an eigen value of T if and only if $T - \alpha I$ is singular (not invertible).
 (v) Let $\{u_1, u_2, \dots, u_n\}$ be an orthonormal set in $V(F)$. Show that for any $v \in V(F)$,
 $w = v - \sum_{i=1}^n (v, u_i) u_i$ is orthogonal to each of u_i , $i = 1, 2, 3, \dots, n$.
 (vi) Obtain an orthonormal basis w.r.t. standard inner product for the subspace of \mathbb{R}^3 generated by $(1,0,3)$ and $(2,1,1)$.

5. Answer any two (2) of the following:(6×2)

(i) State and prove Gauss lemma.
 (ii) Show that $8x^3 - 6x - 1$ and $x^4 + x^3 + x^2 + x + 1$ are irreducible by Eisenstein's criterion on irreducibility.
 (iii) For any prime p , show that the polynomial $f(x) = x^{p-1} + x^{p-2} + \dots + x^2 + x + 1$ is irreducible over \mathbb{Q} , the set of rational numbers.

6. Answer any two (2) of the following:(6×2)

(i) Prove that the characteristic polynomial and the minimal polynomial of the matrix A given by

$$A = \begin{pmatrix} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{pmatrix} \text{ if } a, b, c \text{ are scalars}$$

are equal.

(ii) Show that the matrix

$$A = \begin{pmatrix} 2 & 2 & -6 \\ 2 & -1 & -3 \\ 2 & -1 & 1 \end{pmatrix} \text{ is diagonalisable.}$$

(iii) Obtain eigen values, eigen vectors and eigen space of

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

7. Answer any two (2) of the following:(6×2)

(i) State and prove the Bessel's inequality.
 (ii) State and prove the Gram - Schmidt Orthogonalization process.
 (iii) If $V(F)$ be a FDVS and W is a subspace, then prove that $V(F) = W \oplus W^\perp$.